- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Agarwal, Ishita (1)
-
Anandkumar, Anima (1)
-
Araiza_Bravo, Rodrigo (1)
-
Patti, Taylor_L (1)
-
Yelin, Susanne_F (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML). At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation. Canonically, a QP features input qubits and one output qubit, and is used to determine whether an input state belongs to a specific class. Rydberg atoms, with their extended coherence times and scalable spatial configurations, provide an ideal platform for implementing QPs. In this work, we explore the implementation of QPs on Rydberg atom arrays, assessing their performance in tasks such as phase classification between Z2, Z3, Z4 and disordered phases, achieving high accuracy, including in the presence of noise. We also perform multi-class entanglement classification by extending the QP model to include multiple output qubits, achieving 95\% accuracy in distinguishing noisy, high-fidelity states based on separability. Additionally, we discuss the experimental realization of QPs on Rydberg platforms using both single-species and dual-species arrays, and examine the error bounds associated with approximating continuous functions.more » « less
An official website of the United States government

Full Text Available